加入收藏  || English Version 
 
美国西弗吉尼亚大学张存铨教授学术报告

  发布日期:2015-05-12  浏览量:557


报告题目: Nowhere-zero integer flows of signed graphs

:  张存铨教授/博导(美国西弗吉尼亚大学)

报告时间: 20155 20(周三)上午10:00

报告地点: 磬苑校区澳门赌搏网站大全H306

报告概况:  The well-known Bouchet's conjecture is that every signed graph admitting a nowhere-zero integer flow admits a nowhere-zero integer 6-flow. This conjecture remains open, although it has been extensively researched and studied, such as, Raspaud and Zhu confirmed

the conjecture for 4-edge-connected graphs [JCTB 2011]. Without the requirement of edge-connectivity, Zyka proved the conjecture with 6 replaced by 30. In this talk, we will survey some of those early results under various edge-connectivity conditions, and some new results under some graph minor condition but no or less requirement of edge-connectivity.  If time allows, outlines of proofs will

also be presented.

欢迎各位老师、同学届时前往!

                                                                                         澳门赌搏网站大全

                                                                                        2015512

报告人概况: 张存铨 (Cun-Quan Zhang),美国 West Virginia 大学 Eberly 首席教授,博士生导师,《Discrete Mathematics, Algorithms and Applications 》和 Advances and Applications in Discrete Mathematics》杂志编委,从事图论及其应用研究的国际著名专家。具体研究领域包括:图论理论方面的流理论、圈覆盖问题;图论应用方面的网络结构、离散优化、算法、优化、数据挖掘、社会网络以及生物信息学等。 先后主持美国国家级科研项目11项,出版两本专著 Integer Flows and Cycle Covers of Graphs Circuit Double Covers of Graphs. 张存铨教授发表论文一百余篇,  其中在国际顶级期刊《Transaction of the American Mathematics Society》、《Journal of Combinatorial Theory B》、 Journal of Graph Theory》上发表的论文40余篇。

 

打印此页】【顶部】【关闭
   
版权所有 2019 澳门赌搏网站大全 All rights reserved 皖ICP备05018241号
地址:安徽省合肥市九龙路111号澳门新莆京娱乐网站磬苑校区理工楼H楼 邮编:230601 E-mail:math@ahu.edu.cn
访问统计:自2013年9月1日以来总访问:1000  后台管理


XML 地图 | Sitemap 地图